
Human Ethology 34(2019): 173-193 
Research Article 

STATISTICAL ANALYSIS OF GESTURE ENCODING: HOW 
CONSISTENTLY CAN ETHOLOGISTS ENCODE WHAT THEY 

OBSERVE? 

Hermann Prossinger, Susanne Schmehl, Elisabeth Oberzaucher 

Department for Evolutionary Anthropology, University of Vienna, Austria 

hermann.prossinger@univie.ac.at 

ABSTRACT 
Whenever persons describe localized pain, they include gestures along with their verbal descriptions. 
The “Fascial Distortion Model” (Typaldos, 2006) customizes its pain therapy by trying to classify 
these gestures. Practitioners claim that different Fascial Distortion Model classes necessitate different 
therapies. Here we present a statistical analysis method to assess whether the practitioners’ claims are 
tenable if statistical rigor is assumed. 

Five encoders observed 10 videos, one for each potential client describing his or her pain while 
including gestures. We took an inventory of gesture category loadings using an ethological toolkit 
derived from the “Gesture Action Coding System”. 

The outcomes of these observations are strings of category loadings for each client. All possible 
category loadings make up a dictionary of gestures, where each string of encodings is a (gesture) word 
in a generalized sense. If five encoders observe a client, the list of words should be statistically close, one 
hypothesizes. Our first approach was to look at how many different words occur overall and observe 
whether the (gesture) word lists for each client are consistent among encoders.  

Our statistical methodology uses Bayesian probabilities and is to be seen in a much wider context: 
how to analyze the behaviors that ethologists observe, categorize, and classify. As ethologists’ 
fieldwork quite often involves observing behaviors, be they gestures, facial expressions, etc., their 
classification challenges are analogous to Fascial Distortion Model ones, albeit with different 
dictionaries. We show how the statistical methodology we present here can be used to build gesture 
dictionaries and thereby enhance the statistical reliability of ethologists’ encoding systems, including, 
for example, those for facial expressions. 

Keywords: Dirichlet distribution, Beta distribution, Bayesian probability, Gesture encoding, Fascial 
Distortion Model, Jeffreys prior 
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INTRODUCTORY COMMENTS 

It is common for humans to accompany their verbal descriptions with gestures. FDM (“Fascial 
Distortion Model”, Typaldos, 2006) practitioners use the sequence of gestures accompanying 
verbal descriptions of potential clients’ pain descriptions in order to diagnose pain and then 
design relief therapies.  

In this paper, we describe how we develop statistical approaches to assess the FDM 
practitioners’ claims that gestures accompanying pain descriptions are unique enough (in some 
sense) to differentiate among different possible pain therapies. 

Our data set consists of 10 videos of 10 different potential FDM therapy clients while they 
are describing their pain both verbally and with gestures. Each video was observed by five 
different encoders, who had been trained to observe the 3–6 loadings of eight categories (Table 
1). Thus, every video was observed 5 times and we initially presumed that the 5 lists of 
observations for each client would be consistent in some statistical sense. 

The encoders were anonymous to us authors, as were the sexes and ages of the potential 
clients whose gestures had been videoed. The second author had access to the data files that 
included sex (but not age). The third author coordinated and monitored the data collection. 
The first author received only the partitioned lists of gesture category loadings. 

This paper focuses on statistical methodology of categorical variables of encoding 
observations; it presents results that clarify the understanding and interpretability of statistical 
findings. It therefore intentionally restricts itself to using primarily one category of gestures in 
the calculations. Summary outcomes, such as whether any of the 10 potential clients described 
pain in ways that suggest to the FDM practitioners how many classes are present will not be 
exhaustively detailed here. 

GESTURES, CATEGORIES, LOADINGS 

Data collection  
The FDM practitioner listened to the prospective client’s description and watched the 
accompanying gestures; the latter were videoed during the session. The video was made 
available to us after the client had interacted with the FDM practitioner. 

Categories and loadings 
Table 1 shows the eight categories that the observers were to encode. Encoding took place by 
registering one loading per category. We note that the number of observed encodings can differ 
between encoders of the same video. 

Because each of the five encoders observed each of the 10 videos once, all the observed 
loadings for one video will be distributed across the rows for each category (Fig. 1). We initially 
hypothesized that all, or at least most, of the loadings for each gesture of one category would 
occur in, one or at most two, cells of each category row. In Fig. 1, we show an example of one 
gesture that one encoder actually observed. 
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Table 1: The different loadings for each category. The loadings are categorical variables and 
have no numerical values associated with them. 

Category Loading Category Loading

s1   stroking with body contact s1   one finger

s2   pressing w/o movement s2   two fingers

s3   showing w/o contact s3   three fingers

s4   grabbing (palm & fingers) s4   four fingers

s5   pinching (palm & fingers) s5   five fingers or fist

s1   finger tip s1   palm → pain position

s2   finger edge s2   back of hand → pain position

s3   hand surface (palm or back) s3   inner edge of hand

s4   fist s4   outer edge of hand

s5   fist or clenched hand

s1   without s1   outstretched

s2   light s2   curved

s3   medium s3   completely bent

s4   strong

s1   linear, smooth s1   vertical

s2   linear, intermittent s2   horizontal

s3   circularly, smooth s3   diagonal

s4   circularly, intermittent s4   circular

s5   pointed; no motion

s6   pointed, intermittent
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Figure 1: One raster supplied by one encoder during observation of one gesture in one 
video. Each raster square highlighted in yellow shows which loading has been marked 
during the encoding process. When encoding the description of pain from one video, each 
encoder supplies a set of such rasters with yellow squares that will then be analyzed. The 
raster shows the gesture word ‘bjmovxEG’. 

Developing a statistical procedure 
Each loading of each category is encoded by a categorical variable, encoded conveniently by 
letters drawn from some alphabet (here: case-sensitive Latin). Fig. 1 shows the labels of the 
categorical variables for all possible loadings for all categories. Choosing to encode the loadings 
using an alphabet prevents the fallacy of calculating averages and standard deviations, which do 
not exist for categorical variables. 

For one gesture encoded by one encoder of one video, the marked loadings in the raster 
constitute a word. For five encoding sequences of all gesture sequences in one video by five 
encoders, five lists of words are the outcomes of the encodings of that pain video. Because the 
loadings have been encoded as letters of some alphabet, the pain description (i.e. the FDM 
encoding) is encoded as a list of gesture words. The gesture words themselves must therefore 
also be categorical variables. 

The statistical tasks are: (a) to determine how the population of gesture words is 
distributed, (b) to calculate the likelihoods of the observed sequence of gesture word loadings, 
(c) to define closeness of different gesture words, and, finally, (d) to derive a procedure to 
extract a signal from the five sequences of gesture words per video. 
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The gesture dictionary and observed gesture words 
There are  different possible encodings; therefore, potential clients could use 180000 different 
gesture words for their pain gestures. All these possible encodings make up a dictionary; the 
gesture dictionary therefore contains 180 thousand different words. 

All possible words in the gesture dictionary could not have been observed by the encoders, 
because this would imply thousands of gestures per video. 

Result #1: In this suite of 50 encoding sequences by five encoders encoding 10 videos, 271 
gesture words have been encoded — roughly 5.4 gesture words per video. Result #2: In this 
suite of 50 encoding sequences, 124 different gesture words have been encoded. 

All (different) gesture words encoded comprise the gesture dictionary for this suite of 10 
pain descriptions. We emphasize that the analysis approach presented here is not restricted to 
the analyses of human gestures, nor is it restricted to visual gestures (acoustic gestures such as 
pitch and pronunciation can also be analyzed this way). 

 

Figure 2: The entries of all gestures observed by one encoder of one specific video 
including Jeffreys prior (Perks, 1947). For each category, the sum of observed loadings is a 
constant (namely, 4). For four categories the same loading was always observed. For 
others, such as ‘# of fingers’, the encoder saw one loading twice and another loading twice. 
Using categorical variable encoding, four different gesture words were registered by this 
encoder for this client. The numerical entries for Jeffreys prior have been included and are 
explained in the text. 
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These 124 gesture words may or may not have been observed by all encoders or in all videos, 
but we do know from Result #1 and Result #2 that some gesture words have been observed 
more than once (Fig. 2). 

This encoding analysis is reminiscent of the “crossword puzzle problem”: which words 
must be included in a dictionary to successfully construct a crossword puzzle? 

CONJUGATE DISTRIBUTIONS 

Comparing frequentist (orthodox) statistics with Bayesian statistics 
In frequentist statistics, the probability p is a number (a ‘point estimator’) achieved by 
observing the ratio of looked for (‘favorable’) outcomes versus all outcomes, as the number of 
observations   → ∞. 

This probability is sometimes called a Laplace probability, or more specifically, the Laplace 
paradigm for probability. 

In Bayesian statistics, the probability is a random variable s with a probability density 
function conveniently called its likelihood function (Krushke, 2015), which is defined over the 
domain 𝔻 = [0,1] ⊂ ℝ. For any number of observations, the mode of s will be the most likely 
(ML) probability (sML) for the event to be observed. The Bayesian probability is sometimes 
called ‘a belief ’ (MacKay, 2015) and the ML probability would then be the most likely belief 
(conveniently called the conviction; MacKay, 2015). We note that these words, common in 
psychology research, are thereby statistically quantifiable. 

Frequentist statistics using the Laplace probability paradigm become impossible when (a) 
the number of observations is small and (b) the underlying process that generates the outcome 
is not constant during the observations. 

If, for example, a weather forecast predicts “78% probability of rain at 21:18 local time,” the 
predicted probability is not the result of repeated observations. Weather phenomena are 
chaotic; therefore, observation repetitions (in contrast to: many observations) can never exist. 
The predicted probability of a weather phenomenon is therefore a most likely probability, 
calculated using Bayesian statistics. The predicted weather probability is never a Laplace 
probability.  

In biological and psychological systems, observation repetitions with a constant generating 
process are also rare, even when they are not the outcome of a chaotic process. There could — 
and indeed oftentimes does — exist an underlying drift or a discontinuity during a sequence of 
observations. Hence, frequentist statistics is rarely appropriate for biological or psychological 
phenomena. An example of a situation in which the use of frequentist statistics is appropriate is 
the measurement of the mass and/or diameter of the millions of eggs released by a female 
oyster at one event. 

N
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Bayesian statistics for Bernoulli trials 
Assuming we have a sequence of events in which a list of binary outcomes is registered, these 
outcomes are called Bernoulli trial outcomes (Table 2). 

Table 2: Eight examples of Bernoulli trial outcomes. Each row is an example of a Bernoulli 
trial. The rows may not be combined. The trial in the second row is for mammals, not birds. 
Last row: testing for the distribution of (human) twins in a population. The heading shows 
the parameters of the Beta distribution; they are to be estimated using the data and 
Bayesian methods. 

Because, in Bayesian statistics, the probability of success s is a random variable, the probability 
of failure (1-s) is likewise a random variable. 

The (conjugate) distribution of a (statistical) population that meets the above conditions 
(Bayesian statistics and Bernoulli trial) is the Beta Distribution (Bishop 2006). 

Consider the distribution of sexes (not genders, as gender attribution is not the outcome of 
a Bernoulli trial; Table 4) of clients visiting an FDM practitioner. There are eight female and 
two male clients who show the same gesture category loading. What is the ML probability that 
a female showed this gesture category loading? 

Applying Bayes’ Theorem for a 1st observation of a female (we assume the probability is s 
for observing a female and 1 − s for observing a male) 

Lpost = data ⨉ Lprior 

leads to 

Lpost = constant ⨉ s1 ⨉ Lprior 

with some to-be-determined constant. The sequence of  10 = 8 + 2 observations (perhaps in 
random order) in this example results in 

Lpost = constant ⨉ s8 ⨉ (1 – s)2 ⨉ Lprior 

In general, the posterior likelihood Lpost is 
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Be(α,β)

☐ yes ☐ no

☐ ♂ (XY) ☐ ♀ (XX)

☐ guilty ☐ innocent

☐ tooth present ☐ tooth absent

☐ dead ☐ alive

☐ pass ☐ fail

☐ score a goal ☐ not score a goal

☐ heterozygous ☐ homozygous
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where Г(k) is the Gamma function, a generalization of the factorial k!; where Г(k) = (k − 1)!  
and k is not restricted to integer k (Abramowitz & Stegun, 1972). 

The often-used Bayesian prior is Lprior = 1. As we clarify below, this prior is not statistically 
‘clean’ for our example, because a Bayesian prior infers prior information. 

In almost all statistical analyses, one may not assume that the prior outcome of a trial will 
be observed. Phrased more rigorously: we need a prior likelihood Lprior that does not include 
prior information. Jeffreys (1932) derived this prior, using Fisher’s information matrix. In this 
example, it could be that no client of either sex show the pain gesture loading. The Jeffreys prior 
ensures that no prior information is available prior to the first observation. 

The Jeffreys prior for a Bernoulli trial is 

Using Jeffreys prior, the inferred posterior prior Lpost of the 10 clients (eight females and two 
males) showing this gesture category loading is 

Fig. 3 shows the graph of this posterior likelihood (i.e. including Jeffreys prior) along with the 
most likely probability sML. The exponents for Jeffreys prior for each category for four gesture 
words (Fig. 2) are the fractions in that graph (Perks, 1947). 

One superiority of Bayesian statistics (in addition to the possibility of defining probabilities 
for very small sample sizes) is the possibility of calculating probability uncertainties. These can 
be defined by quantile intervals about the mode. The statistician and the researcher using the 
results are required to make a choice about how the quantiles are defined, because a standard 
deviation is not meaningfully defined for a Beta function. Below, we show one way of 
estimating the uncertainty interval. We (again) stress that the probability is along the horizontal 
axis in Fig. 3, while the probability density function (pdf) is the likelihood function of s. 
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Figure 3: The likelihood function (pdf) and the ±34.1…% uncertainties with the 
resulting confidence interval for the probability s of observing a further female showing 
the pain gesture, using Jeffreys prior. The mode is sML = 0.833… and the ±34.1% 

confidence interval is    or 0.721 ≤ s ≤ 0.966. 

We observe that the estimation using the Laplace probability (alas often used, even though a 

Laplace estimation is not feasible for such a small sample) is  pLaplace =  = 0.800… This 

Laplace probability is to be rejected. Note that sML is the mode, not the expectation value 𝔼. 

Bayesian statistics for multinoulli trials 
In many situations the response or observed outcome is not that of a Bernoulli trial. In such 
situations, the name we use is ‘multinoulli’ trial (MacKay, 2015). Table 3 lists seven examples of 
multinoulli trials with three categorical outcomes and Table 4 lists four examples for 
multinoulli trials with five categorical outcomes. 

+0.721
+0.966

8
8 + 2
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Table 3: Some examples of multinoulli trials with three outcomes. If one of the outcomes is 
“other” — as in row 5 —, then this is an example of a marginalization, as described in the 
text. The heading shows the parameters of the Dirichlet distribution; they are to be 
estimated using the data and Bayesian methods. 

Table 4: Some examples of multinoulli trials with five outcomes. The first example can be 
considered typical in some gender research polls. The second example is a typical 
multinoulli trial for a questionnaire concerning customer feedback. The third are possible 
responses to questions in examinations or on tests (including a marginalization). The 
fourth example lists the loadings of the category “# of fingers” in the gesture word inventory 
(Table 1). The heading shows the parameters of the Dirichlet distribution; they are to be 
estimated using the data and Bayesian methods. 

The (conjugate) distribution of a (statistical) population that meets the two conditions — 
Bayesian statistics and multinoulli trial — is the Dirichlet Distribution (Bishop, 2006). 
Dirichlet distributions can be used for an arbitrary number of categorical variables. The 
Dirichlet distribution is a generalization of the Beta distribution for a multinoulli trial with n1, 
n2, n3, nK different outcomes. We note that the nK occurrences for the Kth outcome are defined 

Dir (α1,α2,α3)

☐ win ☐ loss ☐ tie

☐ yes ☐ no ☐ abstain

☐ bent ☐ curved ☐ outstretched

☐ healthy ☐ damaged ☐ missing

☐ heterosexual ☐ homosexual ☐ other

☐ married ☐ divorced ☐ widowed

☐ healthy ☐ sick ☐ dead

Dir (α1,α2,α3,α4,α5)

☐ L(esbian) ☐ G(ay) ☐ B(isexual) ☐ T(ransgender) ☐ Q(ueer)
☐ very 

dissatisfied
☐ dissatisfied ☐ neutral ☐ satisfied ☐ very 

satisfied

☐ A correct ☐ B correct ☐ C correct ☐ D correct ☐ none are 
correct

☐ one finger ☐ two fingers ☐ three 
fingers

☐ four fingers ☐
five 
fingers or 
fist
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via the other (n − (n1 + n2 + … +nK − 1)) ones. More stringently: the (Bayesian) probabilities s1, 
s2, s3, … , sK-1 define the probability sK because sK = (1 − (s1 + s2 + s3 + . + sK − 1))… 

Bayes’ Theorem for a multinoulli trial with K outcomes is 

Lpost = pdf (Dir(α1, α2, α3, …, αK), s1, s2, s3, …, sK) Lprior 

where we have used the symbol Dir… for a Dirichlet distribution. 
If there are three possible outcomes 

  Lpost = pdf (Dir(α1, α2, α3, …, αK) =  

Because these three outcomes are not independent, we can graph the 2D-surface of Lpost for s1 
and s2; noting that the domain is the triangle s2 = 1 − s1  ∧  s1 ∈ [0,1] ⊂𝔼  (Fig. 4). 
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Figure 4: The likelihood function of a Dirichlet distribution using a Jeffreys prior for an 
encoding of a gesture category with loadings {7,3,4} and a Jeffreys prior { ,  ,  } (Perks, 
1947). (a) The likelihood surface shown in 3D; the light gray contours show the 95%, 
90%, … fractions of the maximum likelihood. (b) The projection of the likelihood surface 
onto the s1-s2 plane. The 95%, 90%, … fractions of the maximum likelihood are contours 
rendered in black; the 95.4…% confidence contour is rendered as a white contour. The 
values of the modes of the probability are rendered in yellow. 

1
3

1
3

1
3
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The curve of the pdf-surface on the s1-pdf plane is not a projection, but rather the integral  

 pdf(Dir(α1, α2), s1, s2)ds2 

likewise for s1. Each of these integrations is called a marginalization. Marginalization reduces 
the number of parameters for any multi-parameter distribution. If, for a Dirichlet distribution, 
all parameters except two are absorbed through marginalization, then the resultant distribution 
is a Beta distribution; a Beta Distribution is the special case of a Dirichlet distribution with 
only two parameters. 

AN OVERVIEW OF DISTRIBUTIONS OF CATEGORY LOADINGS 

Histograms  
The histogram (Fig. 5) shows how many loadings different encoders observed of the same 
category for one client’s pain description. It is conspicuous (and is also reason for the statistical 
challenges that are dealt with in this paper) that there is no obvious consistency of category 
loadings observed. The challenge includes, of course, whether the differences in gesture words 
are significantly different. 

Figure 5: The histogram of loadings by the five different encoders of category2 for one 
specific video. We note that the number of fingers observed by different encoders varies 
considerably. The statistical challenge is to determine whether the differences in 
observation outcome(s) are significantly different. 

∫
1

0
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Some specific issues evident in Fig. 5: 
(a) Encoder5, encoder3 and encoder1 observed ‘only’ two different loadings, while 
encoder2 and encoder4 observed four different loadings, with different frequencies. 
(b) Encoder5 observed four loadings (as did encoder3), while encoder1 observed five 
loadings, as did encoder4. 
(c) Encoder2 observed seven loadings; and four different ones. 

The issues listed imply that the loadings observed vary considerably. In this paper, we do not 
address the issue of reliability of the encoders’ skills (an issue often addressed so as to discard 
some encodings). Rather, we consider all five encoders equally qualified and we take their 
observations (encodings) equally seriously. We use no weightings to model preferences of one 
encoder (or a select few encoders) over the others. Our approach, therefore, implies one 
statistical challenge: whether the different frequencies of encodings are significantly different. 
As we demonstrate below, some of them are, but not all. 

Marginalization leading to a Beta Distribution 
Fig. 5 shows that only the loadings s2 and s3 were registered by encoder1. We can therefore 
integrate 

   pdf(Dir(α1, α2, α3, α4, α5), s1, s2, s3, s4, s5)ds1ds4ds5 

to obtain the likelihood function of a Beta Distribution pdf(Be(α, β),s). Fig. 6 shows the 
likelihood function of this distribution, along with the expected value (𝔼 ≈ 0.700), the mode 
(sML ≈ 0.833) and the confidence interval (0.601 ≦ s ≦ 1). 

∫
1

0 ∫
1

0 ∫
1

0
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Figure 6: The likelihood function of the probability of observing three fingers (loading3) 
by encoder1, including Jeffreys prior. The likelihood function is a Beta distribution, and 
the Bernoulli trial is either loading3 (three fingers) or loading2 (two fingers) (Fig. 5). The 
areas are the ±28.5…% probability quantiles (the maximum permissible areas, because 
the upper confidence limit cannot exceed 1). The uncertainty interval about the mode is 
asymmetric. Observe that the most likely probability (sML … the mode) is considerably 
different from the expectation value. 

Marginalization leading to a multinoulli trial  
Fig. 5 shows that encoder2 and encoder4 have comparable histograms. If we assume the 
loadings differ due to chance, we need to determine whether the differences are significant. 
They are not if the uncertainty contours overlap at a predefined significance level. We define 
95.4 % confidence contours (Fig. 4b). Furthermore, we marginalize out loading1 (no 
observation) and loading5 (the smaller of the equal counts). The result is shown in Fig. 7. We 
observe that the contours overlap, so the differences in the two ML probabilities are 
insignificant. Not all information is discarded via marginalization: the contours remain 
considerably extended. 
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Figure 7: The 95.4…% confidence contours for the loadings observed by encoder2 
(Dataset A) and by encoder4 (Dataset B) of category2 (‘# of fingers’) including Jeffreys 
prior. The overlap of the contours shows that the observed differences in loading 
frequencies are not significantly different. The contours of the sum of the likelihood 
functions are rendered in dark blue. The ML probabilities for mode1 hardly differ for the 
two observers — a fact that is not evident when assessing the histogram (Fig. 5). ML 
probabilities for mode2 differ considerably (difference ~12.7 %), but not significantly. The 
projections of the contour extremes onto each of the axes are not the uncertainty intervals 
of the respective probabilities; the intervals on each axis must be obtained by 
marginalization (i.e. integration over all other loading probabilities as described in the 
text). 

Uncertainties 
In order to evaluate the consistency of the encodings by the five different observers, it is 
insufficient to compare modes; rather, uncertainties must also be compared. Because of 
marginalization it is not possible to use uncertainty intervals, unless marginalization results in a 
Beta distribution (as in Fig. 6). The (white) contours in Fig. 7 are the uncertainties for a case of 
two modes. Another possibility when comparing uncertainties is to use the square root of the 
variance   after marginalization. However, it is fallacious to calculate the uncertainty about 
the mode using  , even in the case of a Beta distribution, because the uncertainty quantiles 
are not due to equal integrals, as demonstrated in Fig. 6. 

v a r

v a r
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Figure 8: The square roots of the variances   (which are linear measures) of the 
observations of the five encoders of the ten clients. The blue bars are those   for which 
marginalization resulted in one dominant mode; the red bars for those where 
marginalization resulted in two modes. The vertical axis does not have a numerical scale. 
Comparison of the lengths of the bars ( ) is only permitted for a specific loading; for 
example, in Video3, all encoders observed only one mode (for loading s1) after 
marginalization, but the   differed among different encoders. The graph (indirectly) 
also shows for which loading the mode was most likely — if there was only one mode — 
or for which loadings two modes were most likely, albeit with different likelihoods. The 
graph shows that no marginalization resulted in three modes. Only the encodings of 
category2 for Video3 and for Video9 are remarkably consistent. 

v a r

v a r

v a r

v a r
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Table 5: Patterns in the modes and uncertainties (estimated by  ), extracted from Fig. 
8. The most likely mode for all 10 clients is pointing with one finger, but there are very 
many exceptions. The uncertainties quantify the reliability (or lack thereof) of the 
encoders. 

The patterns in Table 5 constitute one part of a conclusion. They summarize the results for one 
category. Here, we do not present the results for the other seven categories. Clearly, it is to be 
expected that the distribution of loading modes and   for each of the observed loading 
modes will sometimes differ wildly (as for Video8 and Video10) and sometimes be highly 
consistent (as for Video3 and Video9). 

ML loading probabilities  
In the previous section, we addressed the question whether the modes for various loadings 
roughly agreed or strongly disagreed. We also need to assess how large (in magnitude) the ML 
loadings are: the likelihoods of the respective modes. 

In Fig. 9, we present such an analysis and outcome for Video10 — one of the two 
statistically most challenging cases (Fig. 8 and Table 7). 

v a r

Video 
No.

After Marginalization
1 mode 
(majority)

1 mode 
(others) 2 modes

1 3 × s4
1 × s3 
5 × s5

2 4 × s1
s1 
s5

3 5 × s1 all

4 2 × s1 
2 × s3

s3

5 4 × s1 s2 all

6 5 × s1
s1 
s3

7 4 × s1 1 × s2

8 2 × s2
2 × s3, 2 × s4 
1 × s4, 1 × s5

9 5 × s1 all

10 2 × s4
1 × s2, 1 × s4 
2 × s5, 2 × s5

all; except 1 × 2v a r

all; except 2 × 4v a r

all; except 1v a r

all; except 2 × 2v a r

all; except 3v a r

3 × 1 
1 × 1 
1 × 3

v a r

v a r

v a r

  comparable?v a r

3 × 1 
2 × 1 
1 × 3

v a r

v a r

v a r

v a r
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Figure 8: The modes of the loadings (ML probabilities) graphed for the five encoders for 
one category2 observed in Video10. We note that two encoders observed only one mode, 
three encoders only two modes, and none more than two. However, only two encoders 
observed the same loadings, albeit with different pdf(sML). In summary, none of the 
encoders observed rigorously consistent observation statistics for this video. 

We note that the likelihoods of five modes are almost equal, while the likelihoods of three 
(much smaller) modes differ considerably. 

In detail: we observe that (a) only two encoders observed a single mode for one loading, 
with a likelihood  Pmode ≈ 80% (consequently, these two encoders did not observe only one 
single loading in this video, but both predominantly observed the loading s4) and (b) encoder2, 
encoder3 and encoder4 observed so many loadings that these were Dirichlet-distributed 
(furthermore, the many ML Pmode were not the same for these encoders). 

SUMMARY 

Conclusions about statistical methodology 
The number of gesture words observed by different encoders in the same video varied. Small 
variations in encoding frequencies resulted in well-defined modes of one loading and one small 
variance — whenever the encoders observed such a situation. Quite often, small variations in 
loadings did not occur; then the marginalization resulted in more than one mode. We needed 
to make inventories of modes and variances, because observing and encoding some clients’ 
gestures sequences were statistically very noisy (either because of the difficulties of observing 
the gestures or their ambiguities). 

The longer the video, the greater were the variances of the loadings. Because this paper is 
about statistical methods needed for categorical variables, we did not include the durations of 
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the videos of clients describing their pain. However, none of the videos were short. Some 
clients used only a few gestures, some very many, and not all encoders agreed about this fact. 

When comparing encodings of gestures by different encoders, we do not observe any 
consensus of gestures occurring. However, this statement is too broad — it cannot, as stated, be 
considered a conclusion. To sharpen it, we require the significance of any differences between 
frequencies of gesture word occurrences to be calculated. Assessing the necessary significance 
levels employed requires a justification for the percentages used to calculate quantiles of 
(marginalized) Beta distributions or contours of (marginalized) 3-parameter Dirichlet 
distributions. We always succeeded in marginalizing to these two options. Nonetheless, we 
cannot expect this to be possible for other behavior studies. 

Although we have only demonstrated marginalization for the encodings for category2 (‘# of 
fingers’), it is generally true (at least for this data set and for these encoders) that 
marginalization of the Dirichlet distributions is necessary (because of the high variability of 
loadings) to interpret the ML loadings for each category. We can conclude that either the 
encoders had great difficulty encoding consistently or the gestures of some clients are not 
adequately evident for the encoder to observe them clearly. For example, if one encoder 
observes the loading s3 (‘three fingers’), another encoder might observe s4 (‘four fingers’), 
because it may seem to another encoder that the fourth finger is actually being used during the 
pointing. This issue of ambiguity is omnipresent, yet does not appear to be adequately 
addressed in the ethology literature. It may have often been overlooked in published 
presentations, perhaps because careful statistical analysis (a) using Dirichlet distributions of 
categorical variables, (b) using maximum likelihood methods, (c) including Jeffreys’ prior, and 
(d) marginalizing very infrequent registrations had not been employed. 

Other methods of analyzing these noisy data sets are available in a statistician’s toolkit: 
Singular Value Decomposition (SVD) and Correspondence Analysis (CA), but both are not 
applicable in this case. SVD of the frequencies, as in Fig. 5, will hardly be useful for such low 
frequencies (of which many are zero). Likewise, using CA to determine associations of 
frequencies (as in Fig. 5) will also be unsuccessful for the same reason. Neither SVD nor CA 
can be used across all categories, because the number of category loadings vary (Fig. 1) and no 
matrix can be constructed. 

Inferences for statistical analysis of behaviors 
The statistics of observed behavior published by ethologists must be considered tenuous, 
unless the methods presented here have been rigorously applied. To do so, more than one 
encoder is imperative. If Bayesian statistics are used, small numbers of encoders can be 
employed, where the uncertainties will depend on the number of encoders. 

Consider the case of expert ethologists who ‘train’ future observers until ‘all’ trainees 
observe what the trained ethologist observed: this approach must be considered flawed. For 
one, statisticians cannot assume that the observations made by the trainer have the optimal 
number of modes of loadings and minimal variances (the ‘golden standard’). Even if one were 
to assume that the observations made by the trainer are ‘better’ (in some sense), then the 
trainer would have to perform the statistical analyses presented here in order to quantify the 
trainees’ observational skills. It is better, we argue, to require initial training and thereafter 
analyze the statistical outcomes made by all encoders. Marginalization would presumably 
incorporate a large fraction of differing observations. If, after marginalization, significant 
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differences remain: so be it! We reject the view that there exists a ‘golden standard’ that is to be 
considered a successful sequence of observations. Perhaps observations and encodings by 
humans are simply always very noisy. We insist that more than one observer encode. With 
video and other recording equipment being ubiquitous, repeated viewings can be employed.  

The large variances and the necessary marginalization of loadings imply that AI (Artificial 
Intelligence) methods are much more promising than the analytical statistics presented here. In 
the case of AI algorithms, training with a subset of the observations and ‘bagging’ with the 
remainder sounds promising. But, of course, this necessitates very large data sets (in the order 
of ~1000). Because ethologists would presumably have difficulties setting up such an 
observation program, the methods introduced here will most likely (pun intended!) not 
become obsolete in the near future. 
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